Yes.
Not quite, but close enough.
No. This completely misses the definition for
immediate successor.
Since this seems to be such a great source of confusion for Doron, I will be explicit about all four possibilities for order relations among intervals and real numbers, and the
immediate qualifier. (In the following, the curvy greater-than is the order relation while the straight greater-than is the ordinary numeric comparator. In plain text, when the meaning is clear, the ">" will be used for both.)
"A succeeds B" means:
(1) A, a real number, B, a real number:
[latex]$$ (A \succ B) \, \Leftrightarrow \, (A > B)) $$[/latex]
(2) A, a real number, B, an interval:
[latex]$$ (A \succ B) \, \Leftrightarrow \, (\forall y \, (y \in B) \Rightarrow (A \succ y)) $$[/latex]
(3) A, an interval, B, a real number:
[latex]$$ (A \succ B) \, \Leftrightarrow \, (\forall x \, (x \in A) \Rightarrow (x \succ B)) $$[/latex]
(4) A, an interval, B, an interval):
[latex]$$ (A \succ B) \, \Leftrightarrow \, (\forall x \, \forall y \, (x \in A \wedge y \in B) \Rightarrow (x \succ y)) $$[/latex]
"A immediately succeeds B" means:
[latex]$$(A \, immediately \succ B) \Leftrightarrow ((A \succ B) \wedge \nexists C \, (A \succ C \succ B))$$[/latex]